In [1]:
import pandas as pd
from pylab import plot, show, title, xlabel, ylabel, subplot, savefig
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
df = pd.read_csv('datasets/foghorn.csv')
df.head()
Out[2]:
In [3]:
fig,(ax) = plt.subplots(figsize=(24,12), ncols=1)
#data = [0,1,2,3,4]
ax.plot(df['wave_value'])
fig.tight_layout()
fig.show()
In [4]:
df.count()
Out[4]:
In [5]:
import pandas as pd
import numpy as np
import wave
import scipy.io.wavfile
import math
from pylab import plot, show, title, xlabel, ylabel, subplot, savefig
from scipy import fft, arange, ifft
from numpy import sin, linspace, pi
from scipy.io.wavfile import read,write
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
## MASTERING MARKDOWN
## https://guides.github.com/features/mastering-markdown/
## IMAGE RESIZER
## http://auctionrepair.com/pixels.html
import matplotlib.pyplot as plt
In [7]:
#colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k')
fig,(ax) = plt.subplots(figsize=(24,12), ncols=1)
y=df['wave_value']
lungime=len(y)
timp=len(y)/44100.
t=linspace(0,timp,len(y))
plt.xlabel('Time in Seconds', fontsize = 20)
plt.ylabel('Wave Length', fontsize = 20)
plt.tick_params(axis='both', which='major', labelsize=20)
plt.title("Fog Horn",y=1.02, fontsize = 24)
ax.plot(t,y)
fig.tight_layout()
fig.show()
fig.savefig('fog_horn.png')
In [ ]: